Linkage of myostatin pathway genes with knee strength in humans.
نویسندگان
چکیده
This study was the first to explore the potential role of the myostatin (GDF8) pathway in relation to muscle strength and estimated muscle cross-sectional area in humans using linkage analysis with a candidate gene approach. In young male sibs (n = 329) 11 polymorphic markers in or near 10 candidate genes from the myostatin pathway were genotyped. Muscle mass was estimated by anthropometric measurements, and maximal knee strength was evaluated using isokinetic dynamometers (Cybex NORM). Single-point nonparametric variance components and linear quantitative trait locus regression linkage analysis methods were used. Linkage patterns were observed between knee extension and flexion peak torque with markers D2S118 (GDF8), D6S1051 (CDKN1A), and D11S4138 (MYOD1), and a maximum LOD score of 2.63 (P = 0.0002) was observed with D2S118. The ratios of peak torque over muscle and bone area of the midthigh of the lower contraction velocity (60 degrees/s) showed more frequently significant LOD scores than the torques at high velocity (240 degrees/s). Although myostatin is physiologically more related to muscle mass through possible effects of hyperplasia and hypertrophy than it is to strength, only two estimated muscle cross-sectional areas were marginally linked (LOD 1.06 and 1.07, P = 0.01) with marker D2S118 near GDF8 (2q32.2). The present results gave suggestive evidence that the myostatin pathway might be important for strength phenotypes, and GDF8, CDKN1A, and MYOD1 are potential candidate regions for a further and denser mapping with respect to these phenotypes.
منابع مشابه
Quantitative trait loci for human muscle strength: linkage analysis of myostatin pathway genes.
This study reports the results of a multipoint linkage study that aims to unravel the genetic basis of muscle strength and muscle mass in humans. Myostatin (GDF8) is known to be a strong inhibitor of muscle growth in animals. However, studies examining human myostatin polymorphisms are rare and are limited to the GDF8 gene itself. Here, the contribution to isometric and concentric knee strength...
متن کاملGenetic diversity of myostatin and calpastatin genes in Zandi sheep
Myostatin (MSTN) is an inhibitor of skeletal muscle growth, and a mutation in the gene coding region leads to increased muscling. Calpastatin (CAST) is a specific inhibitor of the ubiquitous calcium-dependent proteases, µ-calpain and m-calpain, found in mammalian tissues. In this study, genomic DNA was extracted from Zandi sheep blood samples. Gel monitoring and spectrophotometer methods were u...
متن کاملComparison of the Effects of Resistance Training with Blood Flow Restriction and Traditional Resistance Training on Myostatin, Muscle Mass and some Physiological Factors in Middle-Aged Women: A Clinical Trial
Background and Objectives: The response of myostatin to resistance training with blood flow restriction is not perfectly clear. Therefore, the purpose of this study comparing the effects of eight weeks resistance training with blood flow restriction and traditional resistance training on myostatin, muscle mass and some related-muscle physiological factors in middle-aged women. Materials ...
متن کاملCloning and characterization of myogenic regulatory genes in three Ictalurid species.
We report sequence, tissue expression and map-position data for myogenin, MYOD1, myostatin and follistatin in three Ictalurid catfish species: channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and white catfish (Ameiurus catus). These genes are involved in muscle growth and development in mammals and may play similar roles in catfish. Amino acid sequences were highly conserved a...
متن کاملGenome-wide linkage scan for contraction velocity characteristics of knee musculature in the Leuven Genes for Muscular Strength Study.
The torque-velocity relationship is known to be affected by ageing, decreasing its protective role in the prevention of falls. Interindividual variability in this torque-velocity relationship is partly determined by genetic factors (h(2): 44-67%). As a first attempt, this genome-wide linkage study aimed to identify chromosomal regions linked to the torque-velocity relationship of the knee flexo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2004